Production and evaluation of biscuits from composite wheat (*Triticum aestivum*) and African yam bean (*Sphenostylis stenocarpa*) flour.

Obasi, N. E. and Eke Obia, E. Department of Food Science and Technology, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.

One of the problems facing the world and developing countries like Nigeria is protein energy malnutrition. African yam bean (*Sphenostylis stenocarpa*) is a grain legume that is very rich in protein. The African yam bean flour was prepared from roasted and unroasted beans. Wheat flour was used as the control. The percentage of ash obtained in this study showed that African yam bean is rich in minerals. From the result of the proximate analysis, it was observed that roasted brown AYB had the highest protein content of (22.0%), followed by roasted white AYB which had a protein content of 21.76%. Raw brown and raw white AYB had a protein content of (20.28% and 20.10% respectively). Wheat had the least protein content (12.75%). The functional composition of the samples from the wheat/African yam bean flour showed that the bulk density values decreased gradually with roasting. The Water Absorption capacity values also decreased with roasting. Foaming capacity varied from 5.52% to 43.21% among the AYB flour samples and decreased with roasting. The anti-nutritional properties of African yam bean and wheat flour show that raw brown AYB had the highest trypsin inhibitor activity with the mean value of (191.20mg/100g), followed by Raw white African yam bean (187.30mg/100g). The tannin content in the flours was low. All the biscuit sample were generally accepted by the panelists in terms of appearance, colour, texture, taste, flavour and mouth feel, except for sample with Wheat : raw brown African yam bean (0:100) and Sample with Wheat : roasted brown African yam bean (0:100) which were neither liked nor disliked.