Objectives of this study were to research the relationship between pectin and the softening of apples by soaking in citric acid solution, pressurizing or heating, then comparing two processing methods, high-pressure-induced and heat-induced apple jam. Apples were diced into 1 cm pieces and soaked in citric acid solution (pH 2.5) for 24 hrs at 35°C or boiled for 10 min. Also, the vacuum-packed pieces were pressurized for 30 min at 500 MPa or boiled for 10 min, then, texture, structure and pectin were measured. Five kinds of apple jam were produced. Diced-apples were soaked in citric acid solution, mixed in a ratio of 1:1 or 0:1 with homogenized apples and sucrose was added (final sugar 60% at pH 2.5). These were vacuum-packed, then pressurized for 30 min at 500 MPa or boiled for 10 min, respectively. Also, a sample mixed in a ratio of 1:1 was heated with sugar and concentrated up to 60% sugar. Steady-flow viscosity, thixotropy and dynamic-viscoelasticity of jam were then measured. Sensory evaluation of jam was compared using a five point scale. Firmness of the apple decreased and cell separations were greatly when boiled > packed-then-boiled > soaked > pressurized, respectively. The amount of pectin decreased due to the removal of Ca$^{2+}$ by soaking, and decreased through hydrolysis by heating but only slightly decreased by pressurization. Thus, the viscosity of concentrated jam was higher than pressure-induced and heat-induced jam. Fresh flavor, color and total evaluation of pressure-induced-jam were better than the heat-induced-jam.