Films produced from non-toxic natural polymers have been established as a new category of materials of high potential. Nanoclay Montmorillonite (MMT), due to the high surface area compared to composite materials improves the mechanical and barrier properties of films. The objective of this study was to evaluate films from Whitemouth croaker protein isolate (CPI) with or without addition of MMT, the films were evaluated by scanning electron microscopy (SEM), structural analysis in infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Protein isolate from Whitemouth croaker was obtained using the pH shifting process. The polymers films were developed by the technique of "casting", which consists of to dry a film solution, applied on a support. The CPI without MMT film had a homogeneous surface with granular and porous structure, having surface irregularities. The CPI with MMT film had a smooth and continuous, without granular and porous structure, minimum surface irregularities, which can be indicative of better interaction between the polymer and MMT. The variation of the interplanar spacing in the films of CPI with MMT was between D_{001} = 10.38 Å and D_{001} = 1.67 Å suggesting the formation of a nanocomposite with low crystallinity. CPI without MMT films prevails a polymeric matrix without the presence of peaks, the CPI with MMT films exhibit a broad band in the region between 2θ = 26.9° and 2θ = 50.4°. The films produced from CPI with MMT showed better properties of SEM, XRD and FTIR as well as improved visual appearance and easy handling.