ABSTRACT

Introduction and Objectives: Cassava is widely consumed in West Africa as gari and farinha de mandioca in Latin America. Gari is typically produced from cassava tubers but its perishability has necessitated the use of dried chips derived from it. This investigation therefore studied the effect of chip rehydration method, soybean addition and backslopping on the quality of gari.

Methodology: Gari was produced from cassava chips by rehydration before milling or milling before rehydration, soybean addition and backslopping, dehydration and toasting and compared with gari produced from chips and fresh tubers using traditional methods.

Results and Discussion: Gari produced by milling before rehydration, soybean addition and backslopping (MRB_{70:30}) had moisture, crude protein, cyanide content, pH and swelling index of 9.80%, 17.68%, 29.20 ppm, 4.44 and 3.80 respectively. The corresponding values for gari produced by chip rehydration before milling, soybean addition and backslopping (RMB_{70:30}), chips and fresh tubers were 9.25, 12.09, 32.40, 3.89 and 3.5; 10.40-12.25, 0.66, 20.30-34.61 ppm, 3.72-3.84 and 3.8-3.9; and 11.63, 1.99, 35.22, 4.05 and 4.20. The soybean gari samples were sensorially inferior to gari from chips and fresh tubers. Particle size distribution was better in MRB_{70:30}, but the water absorption capacity, gelation capacity and energy content were better in RMB_{70:30}. The energy content, swelling index and gelation capacity of RMB_{70:30} and MRB_{70:30} gari were better than gari from chips and fresh tubers.

Conclusion: Gari produced from cassava chips and soybeans (70:30) by backslopping is of a better quality if the chips are rehydrated after milling.