CHARACTERIZATION PHYSICAL, CHEMICAL AND MICROBIOLOGICAL STRAWBERRY, CARROT AND LETTUCE ORGANIC STORED IN TEMPERATURE AND SUBJECT TO PROCESS CHILLED SANITIZING

Emanuelle M. Alcantara, Ezequiel Malfitano Carvalho, Eduardo Valério de Barros Vilas Boas, Caroline Roberta Freire Pires, Departamento de Ciência dos Alimentos, Universidade Federal de Lavras – UFLA, Lavras, Minas Gerais Brasil

This work was carried out with the objective to characterize organic strawberry, lettuce and carrot physical, chemical and microbiologically. The products were separated in seven samples, except carrots (no testimony) and analyzed in triplicates. Of those, five were washed with tap water and sanitized with peracetic acid at 25, 50, 75 and 100μL.L⁻¹ and sodium hypochlorite 50μL.L⁻¹. Of the two remaining samples, one was called control (washed with tap water) and the other one, that was not subjected to any process of sanitization was called testimony. The products were packed and stored under refrigeration, at 6ºC. Physical, chemical (pH, titratable acidity - TA, soluble solids - SS, ratio SS / TA, firmness and color) and microbiological (thermotolerant coliforms, Salmonella sp., Filamentous fungi and yeasts and psychrotrophic aerobic microorganisms) analysis were carried out, on the harvest date and at 3 and 6 days of storage. It was observed interaction between the factors studied (sanitization and storage period) to soluble solids and pH of strawberry and lettuce, respectively. Changes observed on L *, pH and SS/TA of strawberry, color, soluble solids and SS/AT of lettuce and on the firmness of carrot were due to natural aging of the products. The presence of thermotolerant coliforms, Salmonella sp. and psychrotrophic aerobic microorganisms was not detected on strawberry. The treatments with 75 and 100μL.L⁻¹ were more effective for the control of filamentous fungi and yeasts on strawberry. It was not detected the presence of thermotolerant coliforms on samples of lettuce sanitized with peracetic acid. In no sample of lettuce was found Salmonella sp.; the sanitization with 100μL.L⁻¹ was more effective in controlling filamentous fungi and yeasts on lettuce. Concentrations from 50μL.L⁻¹ were effective in reducing the number of filamentous fungi and yeasts. Agradecimento: Fapemig