Among the most important functional properties of starchy products are their thermal and pasting properties. The pasting behavior is usually studied by observing changes in the viscosity of starch system based on rheological principles. From the pasting curve, several parameters can be observed that indicate the extent of disintegration. Mixtures of cassava starch and flour of cassava leaves was extruded under different conditions: 1.5 to 7.5% of cassava leaves flour in the mixture; 20 to 30% of moisture; 60 to 100°C of extrusion temperature and 171 to 231rpm of screw speed, aiming the use in instant products. The diameter of die was 4mm, the compression ratio was 3:1, and the feed rate was 150g/min. The extruded products were analyzed for the paste properties: initial viscosity, peak of viscosity, breakdown, final viscosity and retrogradation in Rapid Visco Analyser (RVA). It is not occurred significant influence of percentage of flour of cassava leaves on pasting properties before the extrusion process. The extrusion process promoted changes in pasting properties independent of tested conditions. Initial viscosity of extruded mixtures ranged from 1.83 to 15.75 RVU; viscosity peak ranged from 18.83 to 42.42 RVU, breakdown ranged from 8.67 to 41.17 RVU and final viscosity ranged from 9.50 to 22.0 RVU. All extrude products showed low retrogradation (0 to 0.67 RVU). In conditions of low percentage of flour of cassava leaves (< 4.5%), high moisture (25%), intermediated extrusion temperature (80°C) and screw speed (203rpm) can be produced instant blend with acceptable RVA properties.