FATTY ACID COMPOSITION OF ONE FORTIFIER MIXTURE BASED ON SWINE LIVER

Naice Eleidiane Santana Monteiro¹, Silvana Mariana Srebernich¹, Sueli Regina Baggio², Gisele Mara Silva Gonçalves³, ¹²³Colleges of Nutrition and Pharmaceutical Sciences–Pontifícia Catholic University of Campinas – PUCC, Av. John Boyd Dunlop, s/n, Jardim Ipaussurama, 13060-904, Campinas, São Paulo, Brazil. ²Food Chemistry and Applied Nutrition Center, Institute of Food Technology - ITAL, Av. Brasil 2880, 13070-178, Campinas, São Paulo, Brazil.

One of the options for supplying the iron deficiency is through the consumption of meat products, especially liver. In these products, a constant concern is to use in the formulation ingredients aiming to optimize the amount and fatty acid profile in order to achieve a more convenient composition and higher nutritional quality. Thus, this study aimed to determine the fatty acid composition of a formulated product containing porcine liver, milk cream and spices. After mixing, homogenizing and drying a powder product was obtained which was called fortifier mixture (MF). The fatty acids in MF was determined by gas chromatography (GC) after conversion of the lipid fraction in methyl esters of fatty acids and the results were expressed as g/100 g of the sample. The results showed that the major fatty acids present in the MF were myristic, palmitic, stearic, oleic and linoleic acids together accounting for 85.68% of total fatty acids. In the case of saturated fatty acids (15.98 g/100g), fatty acids myristic, palmitic and stearic acids together accounted for 90.05%. In the group of unsaturated fatty acids (8.12%), oleic acid accounted for 7.57%. The group of polyunsaturated fatty acids with 1.44 g/100g was represented primarily by the fatty acids Omega 6 (1.20%). The fortifier mixture being in the powder form, it does not depend on cooking or heating, and can be easily added to soups, cream, meat and cooked beans and be used in school feeding.