Gibberellic acid is a natural hormone, acting as promoter and regulator of plant growth. The production of gibberellic acid by solid state fermentation allows the recycling of agro-industrial waste, yielding minimal production costs. A strain of *Fusarium moniliforme* was employed using citric pulp (CP) and soy husk (SH) as substrate. Optimization of physical and chemical conditions of Solid State Fermentation was carried out in Erlenmeyer flasks. Different conditions were studied: pH (4.3 - 5.7), initial humidity (62.95 - 77.05%) and composition of nutritive solution. The effect of the addition of different salts (MgSO$_4$.7H$_2$O, CuSO$_4$.5H$_2$O, KH$_2$PO$_4$, ZnSO$_4$.7H$_2$O), carbon sources (sucrose, glucose and starch) and nitrogen sources (NH$_4$NO$_3$, (NH$_4$)$_2$SO$_4$ and urea) on gibberellic acid production was studied. Results demonstrated that the natural composition of citric pulp and soy husk favors the production of gibberellic acid (5.9 g/kg of dry substrate) without the need of nutritional supplementation to the fermentation medium. This fact represents a great economical advantage of the process. Besides CP and SH are agro-industrial sub-products that are produced in abundance in Brazil.