The high concentration of cocoa solids in dark chocolate, rich in minerals, polyphenols and with high antioxidant activity are primarily responsible for the allocation of "functional food" for this product. The objective of this study was to characterize three brands of dark chocolate with 70% cocoa with respect to its mineral profile, total phenolic content and antioxidant capacity. The minerals calcium, iron, potassium, phosphorus, magnesium, sodium and copper were analyzed by flame atomic emission spectrometry. To determine the phenolic compounds, gallic acid (standard phenolic compound) in a spectrophotometer UV-vis was used. The antioxidant capacity was evaluated using the radical 1,1-diphenyl-2-picryl-hydrazine in a UV-vis spectrophotometer. In the evaluation of mineral content, only sample C was statistically different from the others (p <0.05) for phosphorus content (179.63%), magnesium (56.12%), copper (1.23%) and sodium (10.52%). The total phenolic content of dark chocolates ranged from 153-215 mg EAG/100 g and only brand C was significantly different when compared to the others (p <0.05) when evaluated for total polyphenol content and antioxidant capacity, presenting the lowest value. The samples showed a suitable mineral profile, however, they had reduced antioxidant activity in relation to the phenolic content found, suggesting the presence of non-phenolic antioxidants and phenolic antioxidants in the chocolates studied.