FATTY ACID COMPOSITION OF SHEEP MILK FROM TWO DIFFERENT GENOTYPES DURING THE LACTATION PERIOD

Luiz Gustavo de Pellegrini, Neila S. P. S. Richards, Paula Mattanna, Ana Paula Gusso, Sabrina Vieira da Silva, Graduate Program in Food Science and Technology, Federal University of Santa Maria - UFSM, Avenida Roraima, 1000, Santa Maria, Rio Grande do Sul, Brazil.

An appropriate composition of sheep milk constituents is very important for the production of high quality dairy products. This study aimed to evaluate, during lactation period, the fatty acid composition of milks from Lacaune half-blood sheep (Treatment 1 - T1), and Texel x Ile de France crossbreed sheep (Treatment 2 - T2). The animals were milked on a weekly basis, from the first to tenth week of lactation. At the end of each week, milks from 12 animals of each treatment were mixed and frozen. Fatty acid composition was evaluated by gas chromatography and the results are shown as percentages. For all the ten lactation weeks, higher concentrations of Conjugated Linoleic Acid (CLA) for T1 were found, with values that ranged from 1.43 (first week) to 1.82 (fifth week), while T1 had concentrations ranging from 1.15 (fourth week) to 1.67 (seventh week). Regarding to monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) concentrations, T2 showed values ranging from 22.50 (fourth week) to 28.59 (tenth week) for MUFA and 4.57 (fourth week) to 5.20 (fifth week) for PUFA, while for T1, the results ranged from 21.28 (third week) to 28.03 (seventh week) for MUFA and 3.60 (ninth week) to 4.88 (seventh week) for PUFA. These results indicate that fatty acid composition didn't present a variation pattern during the lactation period measured. In relation to the genetic group, T2 had higher MUFA and PUFA concentrations, while T1 higher CLA concentration.