Mango is a tropical fruit of important commercial value in Brazil and its consumption is mainly as fresh fruit. Fresh-cut mango is an alternative to increase the demand for consumers since it is ready to eat. Nanoparticles in films have been studied in the application for food package. The objective of this work was to evaluate shelf life of fresh-cut mango stored in traditional films and nanoparticles films. Fruits were selected, washed with detergent, sanitized in a 200 mg L\(^{-1}\) sodium dichloroisocyanurate dehydrate solution and stored for 24 h at 10°C. Afterward, fruits were peeled, cut manually into slices, rinsed in sodium dichloroisocyanurate dehydrate (20 mg L\(^{-1}\)) and drained. The slices were packed in both low density polyethylene (LDPE) and LDPE containing silver nanoparticles (NP100). During storage for 10 days at 10°C, they were evaluated every 2 days. Mango slices maintained yellow (84.5 h\(^{\circ}\)) and luminosity of 82.7 for all samples at the end of experiment. Slices packed in NP100 showed slight lower values of total soluble solids (8.2 °Brix), slight higher titratable acidity (0.63 g 100 mL\(^{-1}\)) and ratio of 12.9. Both treatments LDPE and NP100 showed similar pH (3.7) and ascorbic acid content of 41 mg 100 mL\(^{-1}\) during storage. Texture ranged from 18 to 20 N for all samples. The results evidence that there was not difference between the treatments studied and over storage period.