Beverages may be alternatives to the introduction of vegetables in the diet of children. This work aims to study raw (RB) and heated beverages (HB) with pineapple and beet. The materials were cleaned and sanitized in chlorine solution (100 ppm/30 minutes). The pineapple (300g=70%), beet (42.83g=10%), water (81.43g=19%) and sucrose (4.29g=1%) were crushed, filtered, diluted with water (1:1 ratio), heated (20 minutes/100 °C) and cooled (25 °C). The analysis were carried out immediately after cooling. The analysis performed were: total soluble solids (TSS), total titratable acidity (TTA), ascorbic acid (AA), total (TS), reducing (RS) and non-reducing sugar (NRS). Data were presented as average of 4 analysis with the standard deviation and compared using t test. After dilution the concentrations of water, pineapple, sucrose and beet in the beverage ready to drink were: 59.5%, 35%, 5% and 0.5%, respectively. The TSS were the same for the two beverages: 6.5±0.001%. The RB presented TTA, AA, RS, TS and NRS of 0.157±0.009 g.100g⁻¹, 10.629±0.250 mg.100g⁻¹, 5.314±0.022 g.100g⁻¹, 13.126±0.086 g.100g⁻¹, 7.946 g.100g⁻¹, respectively. The HB presented TTA, AA, RS, TS and NRS of 0.170±0.011 g.100g⁻¹, 8.459±0.434 mg.100g⁻¹, 8.549±0.112 g.100g⁻¹, 10.861±0.078 g.100g⁻¹, 2.332 g.100g⁻¹. Warming does not affect TTA, but increased RS and decreased NRS contents, possibly due to hydrolysis of sucrose. The beverages are rich in AA and have TTA, TS and pineapple juice content compatible with other pineapple beverages. They may represent alternatives to the inclusion of beet in the diet of children due to the similarity of pineapple beverages.