QUALITATIVE EVALUATION OF PORK MEAT FROM FOUR DIFFERENT COMMERCIAL GENETIC STRAINS

Evelyn Lopes de Andrade, Thales de Almeida Bitencourt Cardoso, Aliny Kétílim Novais, Caio Abércio da Silva, Ana Maria Bridi, Universidade Estadual de Londrina - UEL, Rodovia Celso Garcia - PR 445, Km 380, 86051-980 Londrina, Paraná, Brazil

The aim with this study was to evaluate pork meat quality from four different commercial genetic strains. Each group composed by 20 animals, 10 castrated males and 10 females. The first group was composed by the crossbreeding of female DB90xMale LM6200Supreme, the second DB90x415TGElite, the third TopigsC40xTalent, and the fourth Topigs40x337TGElite. The animals were lodged in pairs per cage, receiving water and isonutrients diets ad libitum. After slaughtering, longissimusdorsi muscle samples were taken to analyze pH, water loss and luminosity (L*). The pH was checked with a Testo 205 potentiometer 12 hours after slaughtering. Water loss was evaluated by the pressing water loss method. The luminosity was measured using a portable colorimeter Minolta® CR10. Data was submitted to ANOVA and means compared by tukey test at 5%, using the software SAEG-version 9.1 (2007). DB90xLM6200Supreme and Topigs40x337TGElite presented lower pH (5.42 and 5.64, respectively) and DB90x415TGElite and TopigsC40xTalent had the same pH (5.97 and 6.06, respectively). DB90xLM6200Supreme also had greater water loss (35.91%), but no differences were found between DB90x415TGElite strains (34.21%). TopigsC40xTalent and Topigs40x337TGElite genetics obtained similar values (32.94% and 33.33%, respectively). No luminosity differences were found between the strains. However, the fourth genetic luminosity values were higher (average of 54.21) than the indicated to classify meat in normal range of color patterns, those values vary between 43 and 49 (Channon et al., 2000). The four genetics groups evaluated presented very clear color of meat.