Antioxidant activity of extracts from ultrasound-assisted extraction of *Morinda citrifolia* and synergism with α-tocopherol

Y. Y. Thooa, F. Abasb, O. M. Laic, C. W. Hod, and C. P. Tana

aDepartment of Food Technology, Faculty of Food Science & Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. bDepartment of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. cDepartment of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. dDepartment of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras 56000, Kuala Lumpur, Malaysia.

Morinda citrifolia L. (Rubiaceae) has been used as folk medicine for centuries throughout the world. In this study, ultrasound-assisted extraction (UAE) technique was developed for the fast extraction of bioactive compounds from *M. citrifolia*. The experiments were carried out using face-centered central composite design with four independent variables. The optimum combination of ethanol concentration, solid-to-solvent ratio and amplitude and duty cycle of ultrasound was achieved after numerical optimization for the maximum yields (total phenolic content and total flavonoid content) and antioxidant activities (ABTS radical-scavenging capacity and DPPH radical-scavenging capacity). The reduced quadratic models developed for the experimental data were found adequate to describe the relationship between the extraction conditions with p values < 0.05 and R^2 values above 99%. The optimum extraction conditions were as follows: ethanol concentration, 66%; solid-to-solvent ratio, 4:100 g/mL; amplitude, 21.6% and duty cycle, 0.9 W/s. These extraction conditions were tested and validated experimentally; the differences were found insignificant ($p > 0.05$) between the experimental and predicted values for all four responses. The antioxidant interactions between *M. citrifolia* extract (ME) from ultrasound treatment and α-tocopherol was investigated using isobolographic analysis. All combinations of ME to α-tocopherol (1/5, 1/3, 1/2, 2/3, 4/5) had varying effects on the antioxidant activity with fraction 2/3 being synergistic as assessed by using ABTS radical-scavenging capacity and DPPH radical-scavenging capacity. The fraction of 2/3 allowed decrease of 4.4 and 6.0 folds, respectively in the amounts of ME and α-tocopherol needed to achieve desire antioxidant activity.