Chile is one of the leading wine producers in the world, which generates large amounts of grape pomace which can be used in the production of functional ingredients because of the highest concentration of phenolic compounds present in grapes remains in the residues after winemaking. The aim of this study was to characterize the Intermediate Food Product (IFP) of two varieties of red grapes, dried at different temperatures. The grape pomaces of Cabernet Sauvignon and Carmenere varieties, dried at 40 and 60°C (250 µm), were characterized. The content of total phenols, anthocyanins; and antioxidant capacity (DPPH) were measured by spectrophotometric methods and the dietary fiber by an enzymatic method. Also there were analyzed the technological properties: water retention capacity (WRC), oil absorption capacity (OAC), swelling (SW), water absorption index (WAI) and water solubility index (WSI). All measures were done in triplicate. In the total phenol and anthocyanin content, it was observed that the Carmenere IFP presented higher concentration than the Cabernet sauvignon IFP (38.6 and 25.3 mg GAE/g, in the total phenols and 17.3 and 6.7 mg/g anthocyanin, respectively); the antioxidant capacity was higher in Carmenere. Related to the temperature effect, there were higher values of phenolic compounds in IFP dried at 60°C than in the one dried at 40°C (37.8 and 26.1 mg GAE/g, respectively). In the technological properties it was found, as mean, 1.8 mL/g in WRC, 1.5 mL/g in OAC, 4.5 mL/g in SW, 3 g/g in WAI and 20 % of WSI without significant differences.

The authors thank the Grant InnovaCorfo-Chile (09-CAVC-7004)