The antioxidants present in foods have significant potential to curb the risk factors behind some noncommunicable diseases, such as cardiovascular disease and certain cancers currently affecting the world’s population. This investigation evaluated the antioxidant potential present in native berries of Patagonia. Fruits from Aristotelia chilensis (black and white), Luma apiculata, Berberis darwinii, Greigia sphacelata and Berberis microphylla from Araucanía and Berberis microphylla and Empetrum rubrum from Magallanes were studied. The antioxidant compounds were evaluated by a modified Glories method using (+)-catechin, caffeic acid, quercetin, and cyanidin-3-glucoside as standards for total phenolics, tartaric esters, flavonols, and anthocyanins, respectively. Antioxidant activity was assessed using the ORAC method.

B. darwinii had the highest phenolic content, 85.7 mg catechin equivalents/g dry matter, and the highest anthocyanin content, 12.2 mg cyanidin 3-glucoside equivalents/g dry matter. *B. darwinii* also exhibited the greatest antioxidant activity at 121.7 mg Trolox/g dm. The antioxidant potential was significantly different (p≤0.05) among native berries of Patagonia. *B. darwinii* had significantly (p≤0.05) higher total polyphenols and antioxidants compounds measured by Glories method and antioxidant activity compared to other native berries. In turn, *B. microphylla* from the Araucanía and Magallanes presented significant differences (p≤0.05) in the total anthocyanin content compared to other berries. Conversely, *A. chilensis white* turned out to be the weakest, presenting no significant effect on the antioxidant response. Therefore, this study demonstrates the considerable antioxidant potential of *B. darwinii* even surpassing maqui, a berry classified as superfruit.

Acknowledgements: IICA Canada 2011 Internship Program and Research Office at UFRO by GAP technical support.